
 

Non convex cost functions have multiple

Optima only one of which is the

global optimum
The cost functions used

in deep learning
are mostly non convex

and can be very difficult to converge

to the global optimum
There are

multiple challenges associated
with

training
a neural network

Learning rate selection

Avoiding poor
local minimas

Avoiding drastic changes
to

the loss surface



Local minima in deep networks

Till today
it remains an open question

whether local minima with a high

error rate relative to the global
minima

are common in practical deep
networks

However many
recent studies

seem to

indicate that most local minima
have

error rates and generalization
characteristics

that are very
similar to global

minima

Criticalpoints
Given an arbitrary function

a point

at which the gradient
is the zero

rector is called a critical point
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For a l D cost function a critical

point can take one of the three forms

as shown above Assuming each of

these 3 configurations
is equally

likely then the probability
of



A randomly selected
critical point

being a minima is 1 3 Hence

if we
have a total of K critical

points
then on average we will have

a total of Kz
minimas

Now let's consider
a cost function in

a d dimensional space
In general

in a d dimensional
space

we can

slice through
a critical point

in

d different axes
A critical point

can only
be a local minima

if it appears
as a local minima

in every single
one of the



d one dimensional subspaces Hence

using the result from earlier we

have that the probability
that a

randomly
selected critical point

in

a d dimensional
space is a local

minima
is Jd

r As I

increases 10cal minima
become

exponentially
more rare



Momentum

In lecture we observed that loss

surfaces with high curvature results

in oscillations of the SAD updates

The oscillatory
nature leads to a

slower convergence
of the SGD

Since SGD will move in the right

direction but with oscillations so in

order to dampen out the oscillations

we will use the average gradient

to make the updates

av Eg
Otv

0 is the velocity
and more weight

is applied to more recent gradients



creati 2 an exponentially decaying

average of gradients

Adaptnegradient
A major challenge for training deep

networks is appropriately selecting
the

learning rate The basic concept behind

learning rate adaptation is that the

optimal learning
rate is appropriately

modified over the span of learning

to achieve good convergence properties



Adagradi

Adapt global learning
rate over

time using an accumulation of

historical gradients

Keep track of a learning
rate

for each parameter

a at g g

a is the gradient
accumulation

vector
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parameters with largest gradients

experience
a rapid decrease

in their learning rates while

parameters
with smaller gradients

only observe a small decrease

in their learning
rates

since g g Zo so a keeps

growing and
in turn causes the

learning rate to shrink and

eventually become
infinitesimally

Small

Flat regions may
force AdaGrad

to decrease learning
rate before

it reaches a minima



Rmspr

Use a exponentially weighed

moving
average of gradients

a pat Ct
Dg Og

Where M is the decay factor

smaller the decay
factor the

shorter the effective
window



Adami

A Variant combination of

Rms prop and momentum

Keep track of an exponentially

weighted moving
average of

the gradient
v Biv CI BIG

Keep track of an exponentially

weighted moving
average of

historical gradients

ac Brat l Ar g 0g
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Assuming Xc Xz l and 9 1 5 2 we

have

Y It 2h

v o fnmn.it

As n 78 then Ty
explodes



Assuming Xz 1 and a 05,5 0.9

we have
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from problem statement we have the

recursive relation

Vt Ct AD II Bit's

Let's do a change
of variable

in the above summation

I t c

Then

i L J t I

i t 5 0

at is e5

gov 2 5



Hence t l
B gt I

Vt Ct BD E
5 0

Now taking expectation
of both

sides we get

ECVtT
E l BD

Big

Since ECT is a linear operator
so

Eat
C Bi E ECB Se

Since PT
is a deterministic

quantity

so

ELVES
CI B

B ELA g

From problem
statement

Ecgt 5
M 5 0 t I



So t pfm
ELVES I Bi E
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Recall

I Bi Bi B
B

is a geometric
series

with

a _I and
r Be

Then using

the summation
of geometric

series

a hat
5 0 I Bi



Then

Eat Cl BDmCl B

I Bi

ELVIS MCI Bit

Hence

1 Eat
M ELSE

1 Bit

similar'T t

at
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Doing a change of variables

like before

at
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BEST
j o



Taking EET of both sides and

simplifying

that
l Ba

BE ELST5

Since
EESTI S

So

Etat Class
BE

Using the summation
of geometric

series
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E
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Hence
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Recall that for HEIR'h
n
it's

infinity norm is defined as

HAHN
max 1951
i 5 1

Observe that

laijl
Sun of the
absolute Values

of elements in

its row

Hence infinity norm of a matrix

is the maximum
absolute row

sum



set

L 3 I
Then

Ally may
1 2 43 3 123,220

1 1231

23

Now Coming
back to our problem

i
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suppose I tell you
that the

3rd row of W has the maximum

absolute row sum
Then
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Tren from the above pattern

we can conclude that
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Where K is the index of the

row with maximum absolute sum


